TRACK B: Models & Data: Reduce Your Speech Transcription Costs by 90% | Kisaco Research

Deep neural networks (DNNs), a subset of machine learning (ML), provide a foundation for automating conversational artificial intelligence (CAI) applications. FPGAs provide hardware acceleration enabling high-density and low latency CAI. In this presentation, we will provide an overview of CAI, data center use-cases, describe the traditional compute model and its limitations and show how an ML compute engine integrated into the Achronix FPGA can lead to 90% cost reductions for speech transcription.

 

Session Topics: 
Enterprise AI
NLP
Novel AI Hardware
ML at Scale
Sponsor(s): 
Achronix
Speaker(s): 

Author:

Salvador Alvarez

Senior Manager, Product Planning
Achronix
  • Salvador Alvarez is the Senior Manager of Product Planning at Achronix, coordinating the research, development, and launch of new Achronix products and solutions. With over 20 years of experience in product growth, roadmap development, and competitive intelligence and analysis in the semiconductor, automotive, and edge AI industries, Sal Alvarez is a recognized expert in helping customers realize the advantages of edge AI and deep learning technology over legacy cloud AI approaches. Sal holds a B.S. in computer science and electrical engineering from the Massachusetts Institute of Technology.​

Salvador Alvarez

Senior Manager, Product Planning
Achronix
  • Salvador Alvarez is the Senior Manager of Product Planning at Achronix, coordinating the research, development, and launch of new Achronix products and solutions. With over 20 years of experience in product growth, roadmap development, and competitive intelligence and analysis in the semiconductor, automotive, and edge AI industries, Sal Alvarez is a recognized expert in helping customers realize the advantages of edge AI and deep learning technology over legacy cloud AI approaches. Sal holds a B.S. in computer science and electrical engineering from the Massachusetts Institute of Technology.​